GPU accelerated image processing for everyone
Takes a label map, determines distances between all centroids and replaces every label with the average distance to the n closest neighboring labels.
Categories: Graphs, Labels, Measurements
Availability: Available in Fiji by activating the update sites clij and clij2. This function is part of clij2_-2.5.0.1.jar.
Ext.CLIJ2_averageDistanceOfNClosestNeighborsMap(Image input, Image destination, Number n);
// init CLIJ and GPU import net.haesleinhuepf.clij2.CLIJ2; import net.haesleinhuepf.clij.clearcl.ClearCLBuffer; CLIJ2 clij2 = CLIJ2.getInstance(); // get input parameters ClearCLBuffer input = clij2.push(inputImagePlus); destination = clij2.create(input); int n = 10;
// Execute operation on GPU clij2.averageDistanceOfNClosestNeighborsMap(input, destination, n);
// show result destinationImagePlus = clij2.pull(destination); destinationImagePlus.show(); // cleanup memory on GPU clij2.release(input); clij2.release(destination);
% init CLIJ and GPU clij2 = init_clatlab(); % get input parameters input = clij2.pushMat(input_matrix); destination = clij2.create(input); n = 10;
% Execute operation on GPU clij2.averageDistanceOfNClosestNeighborsMap(input, destination, n);
% show result destination = clij2.pullMat(destination) % cleanup memory on GPU clij2.release(input); clij2.release(destination);
// init CLIJ and GPU importClass(net.haesleinhuepf.clicy.CLICY); importClass(Packages.icy.main.Icy); clij2 = CLICY.getInstance(); // get input parameters input_sequence = getSequence(); input = clij2.pushSequence(input_sequence); destination = clij2.create(input); n = 10;
// Execute operation on GPU clij2.averageDistanceOfNClosestNeighborsMap(input, destination, n);
// show result destination_sequence = clij2.pullSequence(destination) Icy.addSequence(destination_sequence); // cleanup memory on GPU clij2.release(input); clij2.release(destination);
import pyclesperanto_prototype as cle cle.average_distance_of_n_closest_neighbors_map(input, destination, n)
quantitative_neighbor_maps.ipynb