GPU accelerated image processing for everyone
Generates a feature stack for Trainable Weka Segmentation.
Use this terminology to specifiy which stacks should be generated:
Use sigma=0 to apply a filter to the original image. Feature definitions are not case sensitive.
Example: “original gaussianBlur=1 gaussianBlur=5 laplacianOfGaussian=1 laplacianOfGaussian=7 entropy=3”
Categories: Segmentation, Machine Learning
Availability: Available in Fiji by activating the update sites clij and clij2. This function is part of clijx-weka_-0.32.0.1.jar.
Ext.CLIJx_generateFeatureStack(Image input, Image feature_stack_destination, String feature_definitions);
// init CLIJ and GPU import net.haesleinhuepf.clijx.CLIJx; import net.haesleinhuepf.clij.clearcl.ClearCLBuffer; CLIJx clijx = CLIJx.getInstance(); // get input parameters ClearCLBuffer input = clijx.push(inputImagePlus); feature_stack_destination = clijx.create(input);
// Execute operation on GPU clijx.generateFeatureStack(input, feature_stack_destination, feature_definitions);
// show result feature_stack_destinationImagePlus = clijx.pull(feature_stack_destination); feature_stack_destinationImagePlus.show(); // cleanup memory on GPU clijx.release(input); clijx.release(feature_stack_destination);
% init CLIJ and GPU clijx = init_clatlabx(); % get input parameters input = clijx.pushMat(input_matrix); feature_stack_destination = clijx.create(input);
% Execute operation on GPU clijx.generateFeatureStack(input, feature_stack_destination, feature_definitions);
% show result feature_stack_destination = clijx.pullMat(feature_stack_destination) % cleanup memory on GPU clijx.release(input); clijx.release(feature_stack_destination);