GPU accelerated image processing for everyone
Produces a touch-matrix where the n nearest neighbors are marked as touching neighbors.
Takes a distance matrix (e.g. derived from a pointlist of centroids) and marks for every column the n smallest distances as neighbors. The resulting matrix can be use as if it was a touch-matrix (a.k.a. adjacency graph matrix).
Inspired by a similar implementation in imglib2 [1]
Note: The implementation is limited to square matrices.
distance_marix : Image touch_matrix_destination : Image n : int number of neighbors
[1] https://github.com/imglib/imglib2/blob/master/src/main/java/net/imglib2/interpolation/neighborsearch/InverseDistanceWeightingInterpolator.java
Categories: Graphs, Measurements
Availability: Available in Fiji by activating the update sites clij and clij2. This function is part of clij2_-2.5.0.1.jar.
Ext.CLIJ2_generateNNearestNeighborsMatrix(Image distance_matrix, Image touch_matrix_destination, Number n);
// init CLIJ and GPU import net.haesleinhuepf.clij2.CLIJ2; import net.haesleinhuepf.clij.clearcl.ClearCLBuffer; CLIJ2 clij2 = CLIJ2.getInstance(); // get input parameters ClearCLBuffer distance_matrix = clij2.push(distance_matrixImagePlus); touch_matrix_destination = clij2.create(distance_matrix); int n = 10;
// Execute operation on GPU clij2.generateNNearestNeighborsMatrix(distance_matrix, touch_matrix_destination, n);
// show result touch_matrix_destinationImagePlus = clij2.pull(touch_matrix_destination); touch_matrix_destinationImagePlus.show(); // cleanup memory on GPU clij2.release(distance_matrix); clij2.release(touch_matrix_destination);
% init CLIJ and GPU clij2 = init_clatlab(); % get input parameters distance_matrix = clij2.pushMat(distance_matrix_matrix); touch_matrix_destination = clij2.create(distance_matrix); n = 10;
% Execute operation on GPU clij2.generateNNearestNeighborsMatrix(distance_matrix, touch_matrix_destination, n);
% show result touch_matrix_destination = clij2.pullMat(touch_matrix_destination) % cleanup memory on GPU clij2.release(distance_matrix); clij2.release(touch_matrix_destination);
// init CLIJ and GPU importClass(net.haesleinhuepf.clicy.CLICY); importClass(Packages.icy.main.Icy); clij2 = CLICY.getInstance(); // get input parameters distance_matrix_sequence = getSequence(); distance_matrix = clij2.pushSequence(distance_matrix_sequence); touch_matrix_destination = clij2.create(distance_matrix); n = 10;
// Execute operation on GPU clij2.generateNNearestNeighborsMatrix(distance_matrix, touch_matrix_destination, n);
// show result touch_matrix_destination_sequence = clij2.pullSequence(touch_matrix_destination) Icy.addSequence(touch_matrix_destination_sequence); // cleanup memory on GPU clij2.release(distance_matrix); clij2.release(touch_matrix_destination);
import pyclesperanto_prototype as cle cle.generate_n_nearest_neighbors_matrix(distance_matrix, touch_matrix_destination, n)