CLIJ2

Logo

GPU accelerated image processing for everyone

CLIJ2 home

imageJ2GaussianBlur

Apply ImageJ2 / ImageJ Ops Gaussian Blur to an image.

Categories: Denoise, Filter

Availability: Available in Fiji by activating the update sites clij, clij2 and clijx-assistant-extensions. This function is part of clijx-assistant-imagej2_-0.6.0.1.jar.

Usage in ImageJ macro

Ext.CLIJx_imageJ2GaussianBlur(Image input, Image destination, Number sigma_x, Number sigma_y, Number sigma_z);

Usage in object oriented programming languages

Java
// init CLIJ and GPU
import net.haesleinhuepf.clijx.CLIJx;
import net.haesleinhuepf.clij.clearcl.ClearCLBuffer;
CLIJx clijx = CLIJx.getInstance();

// get input parameters
ClearCLBuffer input = clijx.push(inputImagePlus);
destination = clijx.create(input);
float sigma_x = 1.0;
float sigma_y = 2.0;
float sigma_z = 3.0;
// Execute operation on GPU
clijx.imageJ2GaussianBlur(input, destination, sigma_x, sigma_y, sigma_z);
// show result
destinationImagePlus = clijx.pull(destination);
destinationImagePlus.show();

// cleanup memory on GPU
clijx.release(input);
clijx.release(destination);
Matlab
% init CLIJ and GPU
clijx = init_clatlabx();

% get input parameters
input = clijx.pushMat(input_matrix);
destination = clijx.create(input);
sigma_x = 1.0;
sigma_y = 2.0;
sigma_z = 3.0;
% Execute operation on GPU
clijx.imageJ2GaussianBlur(input, destination, sigma_x, sigma_y, sigma_z);
% show result
destination = clijx.pullMat(destination)

% cleanup memory on GPU
clijx.release(input);
clijx.release(destination);
clEsperanto Python (experimental)
import pyclesperanto_prototype as cle

cle.gaussian_blur(input, destination, sigma_x, sigma_y, sigma_z)

Example notebooks

count_blobs.ipynb
napari_dask.ipynb
bead_segmentation.ipynb
voronoi_otsu_labeling.ipynb
tribolium_morphometry.ipynb
benchmarking_some_operations.ipynb
gaussian_blur.ipynb

Example scripts

count_blobs.py
napari_.py
napari_magicgui.py
tribolium.py

Back to CLIJ2 reference Back to CLIJ2 documentation

Imprint