GPU accelerated image processing for everyone
By Robert Haase, Kisha Sivanathan
Takes two label maps, and counts for every label in label map 1 how many labels are in a given distance range to it in label map 2.
Distances are computed from the centroids of the labels. The resulting map is generated from the label map 1 by replacing the labels with the respective count.
Categories: Labels, Measurements, Visualisation
Availability: Available in Fiji by activating the update sites clij and clij2. This function is part of clij2_-2.5.0.1.jar.
Ext.CLIJ2_labelProximalNeighborCountMap(Image label_map1, Image label_map2, Image proximal_neighbor_count_map_destination, Number min_distance, Number max_distance);
// init CLIJ and GPU import net.haesleinhuepf.clij2.CLIJ2; import net.haesleinhuepf.clij.clearcl.ClearCLBuffer; CLIJ2 clij2 = CLIJ2.getInstance(); // get input parameters ClearCLBuffer label_map1 = clij2.push(label_map1ImagePlus); ClearCLBuffer label_map2 = clij2.push(label_map2ImagePlus); proximal_neighbor_count_map_destination = clij2.create(label_map1); float min_distance = 1.0; float max_distance = 2.0;
// Execute operation on GPU clij2.labelProximalNeighborCountMap(label_map1, label_map2, proximal_neighbor_count_map_destination, min_distance, max_distance);
// show result proximal_neighbor_count_map_destinationImagePlus = clij2.pull(proximal_neighbor_count_map_destination); proximal_neighbor_count_map_destinationImagePlus.show(); // cleanup memory on GPU clij2.release(label_map1); clij2.release(label_map2); clij2.release(proximal_neighbor_count_map_destination);
% init CLIJ and GPU clij2 = init_clatlab(); % get input parameters label_map1 = clij2.pushMat(label_map1_matrix); label_map2 = clij2.pushMat(label_map2_matrix); proximal_neighbor_count_map_destination = clij2.create(label_map1); min_distance = 1.0; max_distance = 2.0;
% Execute operation on GPU clij2.labelProximalNeighborCountMap(label_map1, label_map2, proximal_neighbor_count_map_destination, min_distance, max_distance);
% show result proximal_neighbor_count_map_destination = clij2.pullMat(proximal_neighbor_count_map_destination) % cleanup memory on GPU clij2.release(label_map1); clij2.release(label_map2); clij2.release(proximal_neighbor_count_map_destination);
// init CLIJ and GPU importClass(net.haesleinhuepf.clicy.CLICY); importClass(Packages.icy.main.Icy); clij2 = CLICY.getInstance(); // get input parameters label_map1_sequence = getSequence(); label_map1 = clij2.pushSequence(label_map1_sequence); label_map2_sequence = getSequence(); label_map2 = clij2.pushSequence(label_map2_sequence); proximal_neighbor_count_map_destination = clij2.create(label_map1); min_distance = 1.0; max_distance = 2.0;
// Execute operation on GPU clij2.labelProximalNeighborCountMap(label_map1, label_map2, proximal_neighbor_count_map_destination, min_distance, max_distance);
// show result proximal_neighbor_count_map_destination_sequence = clij2.pullSequence(proximal_neighbor_count_map_destination) Icy.addSequence(proximal_neighbor_count_map_destination_sequence); // cleanup memory on GPU clij2.release(label_map1); clij2.release(label_map2); clij2.release(proximal_neighbor_count_map_destination);