GPU accelerated image processing for everyone
Takes an image and a corresponding label map, determines the standard deviation of the intensity per label and replaces every label with the that number.
This results in a parametric image expressing standard deviation of object intensity.
Categories: Labels, Measurements, Visualisation
Availability: Available in Fiji by activating the update sites clij and clij2. This function is part of clij2_-2.5.0.1.jar.
Ext.CLIJ2_labelStandardDeviationIntensityMap(Image intensity_image, Image label_map, Image destination);
// init CLIJ and GPU import net.haesleinhuepf.clij2.CLIJ2; import net.haesleinhuepf.clij.clearcl.ClearCLBuffer; CLIJ2 clij2 = CLIJ2.getInstance(); // get input parameters ClearCLBuffer intensity_image = clij2.push(intensity_imageImagePlus); ClearCLBuffer label_map = clij2.push(label_mapImagePlus); destination = clij2.create(intensity_image);
// Execute operation on GPU clij2.labelStandardDeviationIntensityMap(intensity_image, label_map, destination);
// show result destinationImagePlus = clij2.pull(destination); destinationImagePlus.show(); // cleanup memory on GPU clij2.release(intensity_image); clij2.release(label_map); clij2.release(destination);
% init CLIJ and GPU clij2 = init_clatlab(); % get input parameters intensity_image = clij2.pushMat(intensity_image_matrix); label_map = clij2.pushMat(label_map_matrix); destination = clij2.create(intensity_image);
% Execute operation on GPU clij2.labelStandardDeviationIntensityMap(intensity_image, label_map, destination);
% show result destination = clij2.pullMat(destination) % cleanup memory on GPU clij2.release(intensity_image); clij2.release(label_map); clij2.release(destination);
// init CLIJ and GPU importClass(net.haesleinhuepf.clicy.CLICY); importClass(Packages.icy.main.Icy); clij2 = CLICY.getInstance(); // get input parameters intensity_image_sequence = getSequence(); intensity_image = clij2.pushSequence(intensity_image_sequence); label_map_sequence = getSequence(); label_map = clij2.pushSequence(label_map_sequence); destination = clij2.create(intensity_image);
// Execute operation on GPU clij2.labelStandardDeviationIntensityMap(intensity_image, label_map, destination);
// show result destination_sequence = clij2.pullSequence(destination) Icy.addSequence(destination_sequence); // cleanup memory on GPU clij2.release(intensity_image); clij2.release(label_map); clij2.release(destination);
import pyclesperanto_prototype as cle cle.label_standard_deviation_intensity_map(intensity_image, label_map, destination)