CLIJ2

Logo

GPU accelerated image processing for everyone

CLIJ2 home

maskedVoronoiLabeling

Takes a binary image, labels connected components and dilates the regions using a octagon shape until they touch and only inside another binary mask image.

The resulting label map is written to the output.

Hint: Process isotropic images only.

Categories: Filter, Labels, Binary

Availability: Available in Fiji by activating the update sites clij and clij2. This function is part of clijx_-0.30.1.22.jar.

Usage in ImageJ macro

Ext.CLIJx_maskedVoronoiLabeling(Image input, Image mask, Image destination);

Usage in object oriented programming languages

Java
// init CLIJ and GPU
import net.haesleinhuepf.clijx.CLIJx;
import net.haesleinhuepf.clij.clearcl.ClearCLBuffer;
CLIJx clijx = CLIJx.getInstance();

// get input parameters
ClearCLBuffer input = clijx.push(inputImagePlus);
ClearCLBuffer mask = clijx.push(maskImagePlus);
destination = clijx.create(input);
// Execute operation on GPU
clijx.maskedVoronoiLabeling(input, mask, destination);
// show result
destinationImagePlus = clijx.pull(destination);
destinationImagePlus.show();

// cleanup memory on GPU
clijx.release(input);
clijx.release(mask);
clijx.release(destination);
Matlab
% init CLIJ and GPU
clijx = init_clatlabx();

% get input parameters
input = clijx.pushMat(input_matrix);
mask = clijx.pushMat(mask_matrix);
destination = clijx.create(input);
% Execute operation on GPU
clijx.maskedVoronoiLabeling(input, mask, destination);
% show result
destination = clijx.pullMat(destination)

% cleanup memory on GPU
clijx.release(input);
clijx.release(mask);
clijx.release(destination);
clEsperanto Python (experimental)
import pyclesperanto_prototype as cle

cle.masked_voronoi_labeling(input, mask, destination)

Example notebooks

voronoi_otsu_labeling.ipynb

Back to CLIJ2 reference Back to CLIJ2 documentation

Imprint