GPU accelerated image processing for everyone
Determines the maximum of all pixels in a given image.
It will be stored in a new row of ImageJs Results table in the column ‘Max’.
source : Image The image of which the maximum of all pixels or voxels will be determined.
Category: Measurements
Availability: Available in Fiji by activating the update sites clij and clij2. This function is part of clij2_-2.5.0.1.jar.
Ext.CLIJ2_maximumOfAllPixels(Image source);
// init CLIJ and GPU import net.haesleinhuepf.clij2.CLIJ2; import net.haesleinhuepf.clij.clearcl.ClearCLBuffer; CLIJ2 clij2 = CLIJ2.getInstance(); // get input parameters ClearCLBuffer source = clij2.push(sourceImagePlus);
// Execute operation on GPU double resultMaximumOfAllPixels = clij2.maximumOfAllPixels(source);
// show result System.out.println(resultMaximumOfAllPixels); // cleanup memory on GPU clij2.release(source);
% init CLIJ and GPU clij2 = init_clatlab(); % get input parameters source = clij2.pushMat(source_matrix);
% Execute operation on GPU double resultMaximumOfAllPixels = clij2.maximumOfAllPixels(source);
% show result System.out.println(resultMaximumOfAllPixels); % cleanup memory on GPU clij2.release(source);
// init CLIJ and GPU importClass(net.haesleinhuepf.clicy.CLICY); importClass(Packages.icy.main.Icy); clij2 = CLICY.getInstance(); // get input parameters source_sequence = getSequence(); source = clij2.pushSequence(source_sequence);
// Execute operation on GPU double resultMaximumOfAllPixels = clij2.maximumOfAllPixels(source);
// show result System.out.println(resultMaximumOfAllPixels); // cleanup memory on GPU clij2.release(source);
import pyclesperanto_prototype as cle cle.maximum_of_all_pixels(source)
count_blobs.ipynb
napari_dask.ipynb
neighborhood_definitions.ipynb
Segmentation_3D.ipynb
tribolium_morphometry.ipynb
intensity_per_label.ijm
multiply_images_test.py
count_blobs.py
tribolium.py