CLIJ2

Logo

GPU accelerated image processing for everyone

CLIJ2 home

meanSquaredError

Determines the mean squared error (MSE) between two images.

The MSE will be stored in a new row of ImageJs Results table in the column ‘MSE’.

Usage in ImageJ macro

Ext.CLIJ2_meanSquaredError(Image source1, Image source2);

Usage in Java

clij2.meanSquaredError(source1, source2);
// init CLIJ and GPU
import net.haesleinhuepf.clij2.CLIJ2;
import net.haesleinhuepf.clij.clearcl.ClearCLBuffer;
CLIJ2 clij2 = CLIJ2.getInstance();

// get input parameters
ClearCLBuffer source1 = clij2.push(source1ImagePlus);
ClearCLBuffer source2 = clij2.push(source2ImagePlus);
// Execute operation on GPU
double resultMeanSquaredError = clij2.meanSquaredError(source1, source2);
//show result
System.out.println(resultMeanSquaredError);

// cleanup memory on GPU
clij2.release(source1);
clij2.release(source2);

Usage in Matlab

clij2.meanSquaredError(source1, source2);
% init CLIJ and GPU
clij2 = init_clatlab();

% get input parameters
source1 = clij2.pushMat(source1_matrix);
source2 = clij2.pushMat(source2_matrix);
% Execute operation on GPU
double resultMeanSquaredError = clij2.meanSquaredError(source1, source2);
% show result
System.out.println(resultMeanSquaredError);

% cleanup memory on GPU
clij2.release(source1);
clij2.release(source2);

Usage in Icy

clij2.meanSquaredError(source1, source2);
// init CLIJ and GPU
importClass(net.haesleinhuepf.clicy.CLICY);
importClass(Packages.icy.main.Icy);

clij2 = CLICY.getInstance();

// get input parameters
source1_sequence = getSequence();
source1 = clij2.pushSequence(source1_sequence);
source2_sequence = getSequence();
source2 = clij2.pushSequence(source2_sequence);
// Execute operation on GPU
double resultMeanSquaredError = clij2.meanSquaredError(source1, source2);
// show result
System.out.println(resultMeanSquaredError);

// cleanup memory on GPU
clij2.release(source1);
clij2.release(source2);

Back to CLIJ2 reference Back to CLIJ2 documentation

Imprint