GPU accelerated image processing for everyone
Labeles objects directly from grey-value images.
The two sigma parameters allow tuning the segmentation result. The first sigma controls how close detected cells can be (spot_sigma) and the second controls how precise segmented objects are outlined (outline_sigma).Under the hood, this filter applies two Gaussian blurs, spot detection, Otsu-thresholding and Voronoi-labeling. The thresholded binary image is flooded using the Voronoi approach starting from the found local maxima. Noise-removal sigma for spot detection and thresholding can be configured separately.
Category: Labels
Availability: Available in Fiji by activating the update sites clij and clij2. This function is part of clij2_-2.5.0.1.jar.
Ext.CLIJ2_voronoiOtsuLabeling(Image input, Image destination, Number spot_sigma, Number outline_sigma);
// init CLIJ and GPU import net.haesleinhuepf.clij2.CLIJ2; import net.haesleinhuepf.clij.clearcl.ClearCLBuffer; CLIJ2 clij2 = CLIJ2.getInstance(); // get input parameters ClearCLBuffer input = clij2.push(inputImagePlus); destination = clij2.create(input); float spot_sigma = 1.0; float outline_sigma = 2.0;
// Execute operation on GPU clij2.voronoiOtsuLabeling(input, destination, spot_sigma, outline_sigma);
// show result destinationImagePlus = clij2.pull(destination); destinationImagePlus.show(); // cleanup memory on GPU clij2.release(input); clij2.release(destination);
% init CLIJ and GPU clij2 = init_clatlab(); % get input parameters input = clij2.pushMat(input_matrix); destination = clij2.create(input); spot_sigma = 1.0; outline_sigma = 2.0;
% Execute operation on GPU clij2.voronoiOtsuLabeling(input, destination, spot_sigma, outline_sigma);
% show result destination = clij2.pullMat(destination) % cleanup memory on GPU clij2.release(input); clij2.release(destination);
// init CLIJ and GPU importClass(net.haesleinhuepf.clicy.CLICY); importClass(Packages.icy.main.Icy); clij2 = CLICY.getInstance(); // get input parameters input_sequence = getSequence(); input = clij2.pushSequence(input_sequence); destination = clij2.create(input); spot_sigma = 1.0; outline_sigma = 2.0;
// Execute operation on GPU clij2.voronoiOtsuLabeling(input, destination, spot_sigma, outline_sigma);
// show result destination_sequence = clij2.pullSequence(destination) Icy.addSequence(destination_sequence); // cleanup memory on GPU clij2.release(input); clij2.release(destination);
import pyclesperanto_prototype as cle cle.voronoi_otsu_labeling(input, destination, spot_sigma, outline_sigma)
voronoi_otsu_labeling
Segmentation_3D.ipynb
voronoi_otsu_labeling.ipynb
voronoi_otsu_labeling.ijm
napari_performance_demo.py