GPU accelerated image processing for everyone
Applies a pre-trained CLIJx-Weka model to an image and a corresponding label map to classify labeled objects.
Make sure that the handed over feature list is the same used while training the model.
Categories: Labels, Segmentation
Availability: Available in Fiji by activating the update sites clij and clij2. This function is part of clijx-weka_-0.32.0.1.jar.
Ext.CLIJx_wekaLabelClassifier(Image input, Image label_map, Image destination, String features, String modelfilename);
// init CLIJ and GPU import net.haesleinhuepf.clijx.CLIJx; import net.haesleinhuepf.clij.clearcl.ClearCLBuffer; CLIJx clijx = CLIJx.getInstance(); // get input parameters ClearCLBuffer input = clijx.push(inputImagePlus); ClearCLBuffer label_map = clijx.push(label_mapImagePlus); destination = clijx.create(input);
// Execute operation on GPU clijx.wekaLabelClassifier(input, label_map, destination, features, modelfilename);
// show result destinationImagePlus = clijx.pull(destination); destinationImagePlus.show(); // cleanup memory on GPU clijx.release(input); clijx.release(label_map); clijx.release(destination);
% init CLIJ and GPU clijx = init_clatlabx(); % get input parameters input = clijx.pushMat(input_matrix); label_map = clijx.pushMat(label_map_matrix); destination = clijx.create(input);
% Execute operation on GPU clijx.wekaLabelClassifier(input, label_map, destination, features, modelfilename);
% show result destination = clijx.pullMat(destination) % cleanup memory on GPU clijx.release(input); clijx.release(label_map); clijx.release(destination);