GPU accelerated image processing for everyone
Determines the centroids of all labels in a label image or image stack.
It writes the resulting coordinates in a pointlist image. Depending on the dimensionality d of the labelmap and the number of labels n, the pointlist image will have n*d pixels.
Category: Measurements
Availability: Available in Fiji by activating the update sites clij and clij2. This function is part of clij2_-2.5.0.1.jar.
Ext.CLIJ2_centroidsOfLabels(Image source, Image pointlist_destination);
// init CLIJ and GPU import net.haesleinhuepf.clij2.CLIJ2; import net.haesleinhuepf.clij.clearcl.ClearCLBuffer; CLIJ2 clij2 = CLIJ2.getInstance(); // get input parameters ClearCLBuffer source = clij2.push(sourceImagePlus); pointlist_destination = clij2.create(source);
// Execute operation on GPU clij2.centroidsOfLabels(source, pointlist_destination);
// show result pointlist_destinationImagePlus = clij2.pull(pointlist_destination); pointlist_destinationImagePlus.show(); // cleanup memory on GPU clij2.release(source); clij2.release(pointlist_destination);
% init CLIJ and GPU clij2 = init_clatlab(); % get input parameters source = clij2.pushMat(source_matrix); pointlist_destination = clij2.create(source);
% Execute operation on GPU clij2.centroidsOfLabels(source, pointlist_destination);
% show result pointlist_destination = clij2.pullMat(pointlist_destination) % cleanup memory on GPU clij2.release(source); clij2.release(pointlist_destination);
// init CLIJ and GPU importClass(net.haesleinhuepf.clicy.CLICY); importClass(Packages.icy.main.Icy); clij2 = CLICY.getInstance(); // get input parameters source_sequence = getSequence(); source = clij2.pushSequence(source_sequence); pointlist_destination = clij2.create(source);
// Execute operation on GPU clij2.centroidsOfLabels(source, pointlist_destination);
// show result pointlist_destination_sequence = clij2.pullSequence(pointlist_destination) Icy.addSequence(pointlist_destination_sequence); // cleanup memory on GPU clij2.release(source); clij2.release(pointlist_destination);
import pyclesperanto_prototype as cle cle.centroids_of_labels(source, pointlist_destination)
tables
shape_descriptors_based_on_neighborhood_graphs.ipynb
benchmarking_centroids_of_labels.ipynb
centroid_visualisation.ijm
tables.ijm