GPU accelerated image processing for everyone
Computes the distance between all point coordinates given in two point lists.
Takes two images containing pointlists (dimensionality n * d, n: number of points and d: dimensionality) and builds up a matrix containing the distances between these points.
Convention: Given two point lists with dimensionality n * d and m * d, the distance matrix will be of size(n + 1) * (m + 1). The first row and column contain zeros. They represent the distance of the objects to a theoretical background object. In that way, distance matrices are of the same size as touch matrices (see generateTouchMatrix). Thus, one can threshold a distance matrix to generate a touch matrix out of it for drawing meshes.
Categories: Graphs, Measurements
Availability: Available in Fiji by activating the update sites clij and clij2. This function is part of clij2_-2.5.0.1.jar.
Ext.CLIJ2_generateDistanceMatrix(Image coordinate_list1, Image coordinate_list2, Image distance_matrix_destination);
// init CLIJ and GPU import net.haesleinhuepf.clij2.CLIJ2; import net.haesleinhuepf.clij.clearcl.ClearCLBuffer; CLIJ2 clij2 = CLIJ2.getInstance(); // get input parameters ClearCLBuffer coordinate_list1 = clij2.push(coordinate_list1ImagePlus); ClearCLBuffer coordinate_list2 = clij2.push(coordinate_list2ImagePlus); distance_matrix_destination = clij2.create(coordinate_list1);
// Execute operation on GPU clij2.generateDistanceMatrix(coordinate_list1, coordinate_list2, distance_matrix_destination);
// show result distance_matrix_destinationImagePlus = clij2.pull(distance_matrix_destination); distance_matrix_destinationImagePlus.show(); // cleanup memory on GPU clij2.release(coordinate_list1); clij2.release(coordinate_list2); clij2.release(distance_matrix_destination);
% init CLIJ and GPU clij2 = init_clatlab(); % get input parameters coordinate_list1 = clij2.pushMat(coordinate_list1_matrix); coordinate_list2 = clij2.pushMat(coordinate_list2_matrix); distance_matrix_destination = clij2.create(coordinate_list1);
% Execute operation on GPU clij2.generateDistanceMatrix(coordinate_list1, coordinate_list2, distance_matrix_destination);
% show result distance_matrix_destination = clij2.pullMat(distance_matrix_destination) % cleanup memory on GPU clij2.release(coordinate_list1); clij2.release(coordinate_list2); clij2.release(distance_matrix_destination);
// init CLIJ and GPU importClass(net.haesleinhuepf.clicy.CLICY); importClass(Packages.icy.main.Icy); clij2 = CLICY.getInstance(); // get input parameters coordinate_list1_sequence = getSequence(); coordinate_list1 = clij2.pushSequence(coordinate_list1_sequence); coordinate_list2_sequence = getSequence(); coordinate_list2 = clij2.pushSequence(coordinate_list2_sequence); distance_matrix_destination = clij2.create(coordinate_list1);
// Execute operation on GPU clij2.generateDistanceMatrix(coordinate_list1, coordinate_list2, distance_matrix_destination);
// show result distance_matrix_destination_sequence = clij2.pullSequence(distance_matrix_destination) Icy.addSequence(distance_matrix_destination_sequence); // cleanup memory on GPU clij2.release(coordinate_list1); clij2.release(coordinate_list2); clij2.release(distance_matrix_destination);
import pyclesperanto_prototype as cle cle.generate_distance_matrix(coordinate_list1, coordinate_list2, distance_matrix_destination)
spots_pointlists_matrices_tables
tables
tribolium_morphometry
spots_pointlists_matrices_tables.ipynb
mesh_between_centroids.ipynb
mesh_with_distances.ipynb
shape_descriptors_based_on_neighborhood_graphs.ipynb
tribolium_morphometry.ipynb
mesh_closest_points.ijm
spots_pointlists_matrices_tables.ijm
spot_distance_measurement.ijm
tables.ijm
tribolium_morphometry.ijm
mesh_closest_points.py